

# comparatives

# Addendum to the File Detection Test of March 2016

Language: English March 2016 Last Revision: 25<sup>th</sup> April 2016

Commissioned by Microsoft

www.av-comparatives.org

# Introduction

Microsoft commissioned this supplementary report. This support from Microsoft provided extra funding enabling us to build a new model for scoring vendors using malware prevalence. Microsoft also provided the detailed global threat telemetry required to prevalence-weight test results. This report is a customer-impact report; improved versions might be provided for future File-Detection Test reports.

In this report, customer impact is measured according to prevalence. Essentially, some malware samples pose a greater threat to the average user than others, because they are more widespread. Some may target e.g. a specific company or user base, but present less of risk to the general population. Other malware samples may only be found on specific websites, affect specific countries/regions or only be relevant to particular operating system versions or interface languages.

Microsoft's initiative uses its global telemetry data (malware prevalence) to consider the customer impact posed by missed detections. That is, the malware files that antimalware products failed to detect are weighted based on malware-family prevalence, and each vendor's prevalence-weighted results are reported along with the file-detection results in this report. These results are designed to give greater insight into the customer impact of the missed detections during testing. In addition to global prevalence weighting impact, geo-location prevalence is also used to determine the customer impact of missed detections in specific countries for products tested. So, unlike a traditionally scored test which gives each sample the same weight when calculating the percent impact, samples in the prevalence-weighted model have varying impacts based on prevalence information.

This report is supplementary to AV-Comparatives' main report<sup>1</sup>, already published, of the March 2016 File-Detection Test. No additional testing has been performed; rather, the existing test results have been re-analysed from a different perspective, to consider what impact the missed samples are likely to have on customers. It is conceivable that a product with a lower score in the test may actually protect the average user better than one with a higher score, under specific circumstances. Let us imagine that Product A detects 99% of malware samples in the test, but that the 1% of samples not detected are very widespread, and that the average user is guite likely to encounter them. Product B, on the other hand, only detects 98% of samples, but the samples missed are not as prevalent. In this case, users would probably be more at risk using Product A, as it misses more of the malware that is likely to present a threat to them. AV-Comparatives has for many years focused on using prevalent samples in its tests, as mentioned in our reports and also in a Microsoft blog<sup>2</sup>. Furthermore, same sample variants (e.g. polymorphic malware) are clustered into families to avoid a disproportional testset<sup>3</sup>. AV-Comparatives makes uses of telemetry data from various sources, not just Microsoft, as the test-set must remain independent and not based solely on data provided by one specific vendor or organisation. Therefore, minor discrepancies between one vendor's data and our independently sorted combination are possible. The original File-Detection Test in March 2016 used a malware set sorted using various telemetry sources; however, the analysis in this supplementary report is based solely on Microsoft's data.

<sup>3</sup> <u>http://blogs.technet.com/b/mmpc/archive/2009/07/16/let-telemetry-be-your-guide-a-proposal-for-security-</u>tests.aspx



<sup>&</sup>lt;sup>1</sup> <u>http://www.av-comparatives.org/wp-content/uploads/2016/04/avc\_fdt\_201603\_en.pdf</u>

<sup>&</sup>lt;sup>2</sup> <u>http://blogs.technet.com/b/mmpc/archive/2010/06/15/update-on-telemetry-usage-in-tests-part-1.aspx</u>

# **Tested products**

The following products tested in March 2016 are included in this report:

- Avast Free Antivirus 11.1
- AVG Internet Security 2016
- AVIRA Antivirus Pro 15.0
- Bitdefender Internet Security 20.0
- BullGuard Internet Security 16.0
- Emsisoft Anti-Malware 11.0
- eScan Internet Security 14.0
- ESET Smart Security 9.0
- F-Secure Safe 14.150
- Fortinet FortiClient 5.2

- Kaspersky Internet Security 16.0
- Lavasoft Ad-Aware Pro Security 11.10
- McAfee Internet Security 18.0
- Microsoft Windows Defender 4.9
- Quick Heal Total Security 16.0
- Sophos Endpoint Security and Control 10.3
- Tencent PC Manager 11.2
- ThreatTrack Vipre Internet Security Pro 9.3
- Trend Micro Internet Security 10.0

The test-set used was built consulting telemetry data from various sources (not only Microsoft), with the aim of including mainly prevalent malicious samples from the last weeks/months prior the test which posed a threat to users in the field.

# **Detection vs. Protection**

Although very important, the file-detection rate of a product is only one aspect of a complete antivirus product. Almost all antivirus products contain features such as URL-blockers and behavioural protection that protect the user's computer without necessarily identifying every malicious file.

AV-Comparatives also provides a whole-product dynamic "real-world" protection test<sup>4</sup>, as well as other test reports that cover these aspects/features of the products. We invite users to look at our other tests and not only the File-Detection Test, even though a good file-detection rate is still one of the most important, deterministic and reliable basic features of an anti-virus product.



<sup>&</sup>lt;sup>4</sup> <u>http://www.av-comparatives.org/dynamic-tests/</u>

## Methodology

This analysis was carried out using AV-Comparatives' file-detection test data from March 2016. Telemetry data was gathered for the files in the test over the period between January and March 2016. This telemetry came from Microsoft real-time protection (RTP) products and included not only threat telemetry but also behaviour-based early warning telemetry. This encounter rate information comes only from computers whose users have agreed to provide data to Microsoft, but includes over 200 million computers in over 100 countries and regions around the world.

Prevalence is defined as the number of distinct computers that have reported an encounter with a particular malware sample or a malware family. Distinct computers are identified through a unique product GUID (not IP address) associated with Microsoft RTP products.

To assess the prevalence-weighted impact of each sample in the test set, the following data is calculated from the ecosystem telemetry:

- The prevalence of the tested sample
- The prevalence of the malware family
- The position of that malware family relative to other malware families. A malware family can be in one of four ecosystem partitions: high, moderate, low and very low.

#### **Ecosystem Partition Weight Calculation**

To calculate the ecosystem partition weight, all eligible families are identified from ecosystem telemetry over the test set time period. Eligible families are those that have high or severe impact to a customer and are not disputable families. Disputable families are those that are considered to be "potentially unwanted" (such as adware or bundled software). The customer impact of each family is calculated by measuring the number of computers reporting that malware family (prevalence), and then the families are ranked by impact from highest to lowest prevalence. The families are divided into partitions: high, moderate, low and very low using the Head Tail breaks method<sup>5</sup>. Then, the prevalence of each partition is calculated. So, if families in the high partition represent 80% of the ecosystem malware encountered, the test-set families in high will account for 80% of the test score.



<sup>&</sup>lt;sup>5</sup> <u>https://en.wikipedia.org/wiki/Head/tail\_Breaks</u>

# Family Weight Calculation

Next, the family weight of the test set families is calculated by dividing the prevalence of the family by the ecosystem prevalence of all families in the test set. So, if a family was encountered by 1,000 computers in the ecosystem and the total number of computer malware family encounters in the test set was 1,000,000, then the family weight would be 0.1%

If a family is in the high or moderate partition and has less than 50 samples in the test set, then the family weight is multiplied by the number of samples in the test set divided by 50. If a family is in the low or very low partition and has less than 5 samples in the test set, then the family weight is multiplied by the number of samples in the test set divided by 5. For example, if the family weight of a high family was 0.1%, but there were only 25 samples in the test set, then the family weight would be adjusted to 0.05% to account for the small sample set representing that family.

Some malware families are not true families that represent malware of a common origin, but instead are heuristic methods of detecting malware. These types of "families" are called generic families. Malware detected by Microsoft's generic signatures could be members of classified or unclassified "real" families. Most prevalent samples are categorized into their true family using Microsoft detection names<sup>6</sup> or AV-Comparatives family mapping. However, some samples will still fall into generic family categories. Therefore, any samples that are detected with a generic family are given a family weight equal to the average of all real family weights. In the case that a sample was a member of a family that had no prevalence information in the Microsoft ecosystem or that was not detected by Microsoft during that timeframe, it will also receive the average family for this calculation.

Descriptions and information about malware families can be found in the Microsoft Malware Protection Center's Malware Encyclopedia <u>http://www.microsoft.com/security/portal/threat/Threats.aspx</u>

#### Family Impact to Test Set (Partition-adjusted family weight)

After the partition and family weights are calculated, the families are normalized by their partition by dividing the family weight by the sum of all family weights in that family's partition, and then by multiplying the result by the partition percent. This normalization ensures that the family weights closely match the ecosystem. For example, if the family represented 0.1% of the partition, and the family's partition represents 50% of the test set, then the partition-adjusted family weight is 0.05% which represents that family's total impact to the test set.

#### Sample Impact to Test Set

The next step is to calculate the prevalence of each sample, which is used to establish that sample's importance respective to other samples in the same malware family. This step is calculated by dividing the prevalence of each file by the prevalence of all files in that family. For example, let's say there are 91 samples in a family. 90 of them were encountered by only 1 computer, but one sample was encountered by 10 computers. The one sample affecting 10 computers would account for 10% (10 / (90+10))) of that family's impact and the remaining samples would each account for 1%.



<sup>&</sup>lt;sup>6</sup> <u>http://www.microsoft.com/security/portal/mmpc/shared/malwarenaming.aspx</u>

After calculating the sample's impact to the family, the final sample impact to the test set is calculated by multiplying the sample impact to the family with the partition adjusted family weight. For example, if the sample represented 10% of the family, and the partition adjusted family weight was 0.05%, the sample's test impact is 0.005% (10% \* 0.05%) and the remaining 90 samples represent 0.045%.

#### Vendor Test Score Calculation

Each vendor's test score is created by subtracting the sum of the impact of all missed samples from 1. So, if the vendor only missed the one sample impacting 10 computers in the example above, then the vendor's prevalence-weighted test score would be 99.995%.

#### **Country Vendor Test Score Calculation**

A vendor test score is calculated for any region that had 10,000 or more computers reporting threats during the test set period. The calculation works exactly the same as the worldwide calculation. However, the prevalence information used to calculate the partition-adjusted family weight comes solely from that country rather than the worldwide telemetry to highlight the vendor's protection against the most prevalent threats affecting that particular locale.



# **Test-Set description**

The test-set used in March 2016 for the File-Detection Test contained 163763 malware samples. The number of encounters caused by the malware samples used in the test was according to Microsoft's telemetry data around 2,931,597. The malware families represented by the test set had nearly 60 million computer encounters. The world map below shows the countries in which these malware families had the biggest impact.



There are over 150 countries of the world for which Microsoft have data for less than 10,000 computers reporting threats. These are considered to be too small to be statistically relevant – the margin of error is too high to accurately represent the population of Internet users in the country. These appear as white on the map. The impact on the remaining ~100 countries are shown as blue in the map.

#### Top 15 most impacted countries:

| Myanmar    | 33.3%                                                                                                                                                         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pakistan   | 28.0%                                                                                                                                                         |
| Indonesia  | 27.5%                                                                                                                                                         |
| Mongolia   | 27.5%                                                                                                                                                         |
| Palestina  | 26.2%                                                                                                                                                         |
| Syria      | 24.7%                                                                                                                                                         |
| Iran       | 24.4%                                                                                                                                                         |
| Nepal      | 22.9%                                                                                                                                                         |
| Tanzania   | 22.5%                                                                                                                                                         |
| Bangladesh | 21.5%                                                                                                                                                         |
| Iraq       | 20.5%                                                                                                                                                         |
| Algeria    | 20.3%                                                                                                                                                         |
| Egypt      | 20.1%                                                                                                                                                         |
| Vietnam    | 19.9%                                                                                                                                                         |
| Ghana      | 19.7%                                                                                                                                                         |
|            | Myanmar<br>Pakistan<br>Indonesia<br>Mongolia<br>Palestina<br>Syria<br>Iran<br>Nepal<br>Tanzania<br>Bangladesh<br>Iraq<br>Algeria<br>Egypt<br>Vietnam<br>Ghana |

#### Top 15 less impacted countries:

| 1.  | Japan            | 1.1% |
|-----|------------------|------|
| 2.  | Finland          | 1.4% |
| 3.  | Norway           | 1.7% |
| 4.  | Denmark          | 1.8% |
| 5.  | Switzerland      | 1.8% |
| 6.  | United States    | 1.9% |
| 7.  | Sweden           | 2.0% |
| 8.  | Australia        | 2.1% |
| 9.  | New Zealand      | 2.1% |
| 10. | . United Kingdom | 2.2% |
| 11. | . Ireland        | 2.2% |
| 12. | . Canada         | 2.2% |
| 13. | . Germany        | 2.3% |
| 14. | . Austria        | 2.4% |
| 15. | . Netherlands    | 2.5% |





#### Distribution of Malware Types in the test-set

#### Top 20 Malware Families in the test-set (partitions in parenthesis)

| 1. Virut      | 15.2% (High)    | 11. Skeeyah  | 2.4% (Very Low) |
|---------------|-----------------|--------------|-----------------|
| 2. Ramnit     | 12.1% (High)    | 12. Upatre   | 2.2% (Low)      |
| 3. Sality     | 8.5% (High)     | 13. Dorkbot  | 1.5% (High)     |
| 4. Vobfus     | 5.0% (Moderate) | 14. Ursnif   | 1.3% (Low)      |
| 5. Bladabindi | 4.6% (High)     | 15. Mytonel  | 1.2% (High)     |
| 6. Kovter     | 3.4% (Moderate) | 16. Tescrypt | 1.2% (High)     |
| 7. Gamarue    | 3.3% (High)     | 17. Allaple  | 1.1% (Low)      |
| 8. Blakamba   | 3.0% (Moderate) | 18. Parite   | 1.0% (Moderate) |
| 9. Dynamer    | 2.5% (Very Low) | 19. Chir     | 1.0% (Moderate) |
| 10. Nivdort   | 2.5% (Moderate) | 20. Lethic   | 1.0% (Low)      |

# Top 10 Test Set Malware Families7 with highest<br/>encounter rates in Microsoft's ecosystemMalware FamilyEcosystem Computers

|     | -          |         |
|-----|------------|---------|
| 1.  | Gamarue    | 4594578 |
| 2.  | Peals      | 3747796 |
| 3.  | Dynamer    | 3586450 |
| 4.  | Skeeyah    | 3317590 |
| 5.  | Obfuscator | 3168830 |
| 6.  | Spursint   | 2302993 |
| 7.  | Autorun    | 1997233 |
| 8.  | Jenxcus    | 1961297 |
| 9.  | Dorv       | 1406784 |
| 10. | Ramnit     | 1317871 |

# Top 10 Test Set Malware Families with

| highest Test Impact |               |             |  |  |
|---------------------|---------------|-------------|--|--|
| Ма                  | alware Family | Test Impact |  |  |
| 1.                  | Gamarue       | 24.0%       |  |  |
| 2.                  | Ramnit        | 6.9%        |  |  |
| 3.                  | Sality        | 5.6%        |  |  |
| 4.                  | Phabeload     | 3.5%        |  |  |
| 5.                  | Virut         | 3.1%        |  |  |
| 6.                  | Bladabindi    | 2.6%        |  |  |
| 7.                  | Jenxcus       | 2.5%        |  |  |
| 8.                  | Tescrypt      | 2.2%        |  |  |
| 9.                  | Nuqel         | 1.9%        |  |  |
| 10.                 | Mytonel       | 1.9%        |  |  |

<sup>7</sup> The families in bold are generic family names and therefore carry a very low test impact even if they are encountered relatively often.



# **Detection Rates and Customer Impact**

Based on the missed samples and the detection rate over the whole test-set, Microsoft have calculated the Prevalence-Weighted Test Score. This can be seen in the table below.

|                  | Prevalence-Weighted | Missod Complex | 100% -Missed | Difference in |
|------------------|---------------------|----------------|--------------|---------------|
|                  | Test Score          | missed samples | Samples      | Scores        |
| 1. AVIRA         | 99.9%               | 0.1%           | 99.9%        | -             |
| 2. Kaspersky Lab | 99.9%               | 0.1%           | 99.9%        | -             |
| 3. Microsoft     | 99.7%               | 1.9%           | 98.1%        | +1.6%         |
| 4. ESET          | 99.7%               | 0.6%           | 99.4%        | +0.3%         |
| 5. F-Secure      | 99.7%               | 0.2%           | 99.8%        | -0.1%         |
| 6. ThreatTrack   | 99.7%               | 0.2%           | 99.8%        | -0.1%         |
| 7. Emsisoft      | 99.7%               | 0.2%           | 99.8%        | -0.1%         |
| 8. Tencent       | 99.7%               | 0.2%           | 99.8%        | -0.1%         |
| 9. Bitdefender   | 99.7%               | 0.2%           | 99.8%        | -0.1%         |
| 10. BullGuard    | 99.7%               | 0.2%           | 99.8%        | -0.1%         |
| 11. eScan        | 99.7%               | 0.2%           | 99.8%        | -0.1%         |
| 12. Quick Heal   | 99.7%               | 0.2%           | 99.8%        | -0.1%         |
| 13. Lavasoft     | 99.6%               | 0.3%           | 99.7%        | -0.1%         |
| 14. Avast        | 99.6%               | 0.6%           | 99.4%        | +0.2%         |
| 15. Fortinet     | 99.5%               | 0.6%           | 99.4%        | +0.1%         |
| 16. McAfee       | 99.5%               | 1.1%           | 98.9%        | +0.6%         |
| 17. AVG          | 99.1%               | 1.2%           | 98.8%        | +0.3%         |
| 18. Trend Micro  | 99.0%               | 1.6%           | 98.4%        | +0.6%         |
| 19. Sophos       | 98.0%               | 2.4%           | 97.6%        | +0.4%         |



## **Heat-Maps Overview**

The interactive heat maps for all countries can be found on <a href="http://impact.av-comparatives.org">http://impact.av-comparatives.org</a>

The heat maps for each vendor, i.e. the coloured maps of the world show data that is normalised by the relative size of the country. Thus the maps represent the countries with the highest risk relative to the prevalence of files that were missed in the test set. This normalisation differs from the heat map displayed in the **Test-Set Description** (on page 7); that map is normalised based on the prevalence of the entire test set to show the prevalence of the files that were used in the test set. As a consequence, the scale on the vendor-specific heat maps and the colours shows are not directly comparable to the test-set description heat map.

The table below shows the numbers only for the largest markets according to the Microsoft data, i.e. only for the countries where Microsoft saw more than 6 million reporting machines.

|               | Brazil | Canada | China  | France | Germany | India  | Italy  | Japan  | Mexico | Russia | South Korea | Spain  | UK     | USA    |
|---------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|-------------|--------|--------|--------|
| Avast         | 99,91% | 99,99% | 99,98% | 99,98% | 99,99%  | 99,92% | 99,98% | 100,0% | 99,97% | 99,99% | 99,97%      | 99,98% | 99,99% | 99,99% |
| AVG           | 99,83% | 99,98% | 99,97% | 99,96% | 99,98%  | 99,86% | 99,95% | 99,99% | 99,92% | 99,93% | 99,91%      | 99,96% | 99,97% | 99,98% |
| Avira         | 99,99% | 100,0% | 100,0% | 100,0% | 100,0%  | 99,99% | 100,0% | 100,0% | 99,99% | 99,99% | 99,99%      | 99,99% | 100,0% | 100,0% |
| Bitdefender   | 99,95% | 99,99% | 99,99% | 99,99% | 99,98%  | 99,95% | 99,97% | 100,0% | 99,97% | 99,99% | 99,99%      | 99,96% | 99,98% | 99,99% |
| BullGuard     | 99,95% | 99,99% | 99,99% | 99,99% | 99,98%  | 99,95% | 99,97% | 100,0% | 99,97% | 99,99% | 99,99%      | 99,96% | 99,98% | 99,99% |
| Emsisoft      | 99,95% | 99,99% | 99,99% | 99,99% | 99,98%  | 99,95% | 99,97% | 100,0% | 99,97% | 99,99% | 99,99%      | 99,96% | 99,98% | 99,99% |
| eScan         | 99,95% | 99,99% | 99,99% | 99,99% | 99,98%  | 99,95% | 99,97% | 100,0% | 99,97% | 99,99% | 99,99%      | 99,96% | 99,98% | 99,99% |
| ESET          | 99,93% | 99,99% | 99,97% | 99,98% | 99,99%  | 99,93% | 99,98% | 99,99% | 99,96% | 99,96% | 99,96%      | 99,98% | 99,99% | 99,99% |
| Fortinet      | 99,95% | 99,99% | 99,97% | 99,99% | 99,99%  | 99,93% | 99,98% | 100,0% | 99,98% | 99,89% | 99,95%      | 99,98% | 99,98% | 99,99% |
| F-Secure      | 99,95% | 99,99% | 99,99% | 99,99% | 99,98%  | 99,95% | 99,97% | 100,0% | 99,97% | 99,99% | 99,99%      | 99,96% | 99,98% | 99,99% |
| Kaspersky Lab | 99,98% | 100,0% | 99,99% | 100,0% | 100,0%  | 99,98% | 100,0% | 100,0% | 99,99% | 100,0% | 100,0%      | 100,0% | 100,0% | 100,0% |
| Lavasoft      | 99,94% | 99,99% | 99,99% | 99,99% | 99,98%  | 99,95% | 99,97% | 100,0% | 99,97% | 99,99% | 99,99%      | 99,96% | 99,98% | 99,99% |
| McAfee        | 99,93% | 99,97% | 99,97% | 99,98% | 99,98%  | 99,91% | 99,97% | 99,99% | 99,95% | 99,94% | 99,95%      | 99,97% | 99,97% | 99,95% |
| Microsoft     | 99,97% | 99,99% | 99,99% | 99,99% | 99,98%  | 99,96% | 99,97% | 100,0% | 99,97% | 99,98% | 99,98%      | 99,96% | 99,98% | 99,99% |
| Quick Heal    | 99,95% | 99,99% | 99,99% | 99,99% | 99,98%  | 99,95% | 99,97% | 100,0% | 99,97% | 99,99% | 99,99%      | 99,96% | 99,98% | 99,99% |
| Sophos        | 99,71% | 99,94% | 99,91% | 99,93% | 99,96%  | 99,44% | 99,91% | 99,98% | 99,83% | 99,87% | 99,85%      | 99,92% | 99,94% | 99,94% |
| Tencent       | 99,95% | 99,99% | 99,99% | 99,99% | 99,98%  | 99,95% | 99,97% | 100,0% | 99,97% | 99,99% | 99,99%      | 99,96% | 99,98% | 99,99% |
| ThreatTrack   | 99,95% | 99,99% | 99,99% | 99,99% | 99,98%  | 99,95% | 99,97% | 100,0% | 99,97% | 99,99% | 99,99%      | 99,96% | 99,98% | 99,99% |
| Trend Micro   | 99,91% | 99,98% | 99,97% | 99,97% | 99,97%  | 99,82% | 99,95% | 99,99% | 99,90% | 99,85% | 99,93%      | 99,96% | 99,98% | 99,98% |



## Avast

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Bulgaria     | 5109 in 100000 |
|-----------------|----------------|
| 2. Ecuador      | 1730 in 100000 |
| 3. Macedonia    | 1358 in 100000 |
| 4. Honduras     | 1327 in 100000 |
| 5. Chile        | 1236 in 100000 |
| 6. Algeria      | 1233 in 100000 |
| 7. Peru         | 1166 in 100000 |
| 8. Saudi Arabia | 992 in 100000  |
| 9. Serbia       | 975 in 100000  |
| 10. Venezuela   | 957 in 100000  |

Global Non-Detection Risk: 430 in 100000

- 1. Jenxcus
- 2. Binrop
- 3. Bladabindi
- 4. Ramnit
- 5. Nitol

| 11. Slovak Republic | 950 in 100000 |
|---------------------|---------------|
| 12. Czech Republic  | 912 in 100000 |
| 13. <b>Brazil</b>   | 906 in 100000 |
| 14. Turkey          | 861 in 100000 |
| 15. Morocco         | 836 in 100000 |
| 16. Portugal        | 831 in 100000 |
| 17. Israel          | 822 in 100000 |
| 18. Colombia        | 813 in 100000 |
| 19. Tunisia         | 777 in 100000 |
| 20. Puerto Rico     | 728 in 100000 |
|                     |               |



# AVG

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Ecuador        | 4240 in 100000 |
|-------------------|----------------|
| 2. Honduras       | 3329 in 100000 |
| 3. Chile          | 3050 in 100000 |
| 4. Peru           | 2917 in 100000 |
| 5. Algeria        | 2865 in 100000 |
| 6. Malaysia       | 2563 in 100000 |
| 7. Venezuela      | 2456 in 100000 |
| 8. Saudi Arabia   | 2285 in 100000 |
| 9. Czech Republic | 2114 in 100000 |
| 10. Morocco       | 1906 in 100000 |

Global Non-Detection Risk: 915 in 100000

- 1. Jenxcus
- 2. Bladabindi
- 3. Gamarue
- 4. Bunitu
- 5. Mytonel

| 11. Slovak Republic                                                                     | 1895 in 100000                                                                         |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 12. Puerto Rico                                                                         | 1771 in 100000                                                                         |
| 13. <b>Brazil</b>                                                                       | 1743 in 100000                                                                         |
| 14. Tunisia                                                                             | 1725 in 100000                                                                         |
| 15. Iraq                                                                                | 1713 in 100000                                                                         |
|                                                                                         |                                                                                        |
| 16. South Korea                                                                         | 1678 in 100000                                                                         |
| 16. <b>South Korea</b><br>17. Colombia                                                  | 1678 in 100000<br>1641 in 100000                                                       |
| 16. <b>South Korea</b><br>17. Colombia<br>18. Israel                                    | 1678 in 100000<br>1641 in 100000<br>1610 in 100000                                     |
| 16. <b>South Korea</b><br>17. Colombia<br>18. Israel<br>19. Argentina                   | 1678 in 100000<br>1641 in 100000<br>1610 in 100000<br>1530 in 100000                   |
| 16. <b>South Korea</b><br>17. Colombia<br>18. Israel<br>19. Argentina<br>20. Azerbaijan | 1678 in 100000<br>1641 in 100000<br>1610 in 100000<br>1530 in 100000<br>1515 in 100000 |



# **AVIRA**

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Syria                | 340 in 100000 |
|-------------------------|---------------|
| 2. Azerbaijan           | 316 in 100000 |
| 3. Latvia               | 314 in 100000 |
| 4. Moldova              | 313 in 100000 |
| 5. Georgia              | 298 in 100000 |
| 6. Armenia              | 297 in 100000 |
| 7. Albania              | 295 in 100000 |
| 8. Bosnia and Herzegov. | 288 in 100000 |
| 9. Australia            | 278 in 100000 |
| 10. Kuwait              | 263 in 100000 |

Global Non-Detection Risk: 32 in 100000

- 1. Lockscreen
- 2. Kegotip
- 3. Bancos
- 4. Gamarue
- 5. Ramnit

| 11. Estonia         | 259 in 100000 |
|---------------------|---------------|
| 12. Slovak Republic | 257 in 100000 |
| 13. Kenya           | 256 in 100000 |
| 14. Croatia         | 253 in 100000 |
| 15. Austria         | 253 in 100000 |
| 16. Lithuania       | 242 in 100000 |
| 17. Switzerland     | 238 in 100000 |
| 18. South Africa    | 229 in 100000 |
| 19. Kazakhstan      | 228 in 100000 |
| 20. Peru            | 225 in 100000 |
|                     |               |



# Bitdefender

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Austria    | 1348 in 100000 |
|---------------|----------------|
| 2. Ecuador    | 1303 in 100000 |
| 3. Romania    | 1236 in 100000 |
| 4. Honduras   | 1077 in 100000 |
| 5. Chile      | 1030 in 100000 |
| 6. Israel     | 948 in 100000  |
| 7. Costa Rica | 912 in 100000  |
| 8. Sweden     | 910 in 100000  |
| 9. Peru       | 896 in 100000  |
| 10. Germany   | 871 in 100000  |

Global Non-Detection Risk: 335 in 100000

- 1. Jenxcus
- 2. Nivdort
- 3. Tofsee
- 4. Chicrypt
- 5. Bladabindi

| 11. <b>S</b> | ipain             | 868 in | 100000 |
|--------------|-------------------|--------|--------|
| 12. A        | lgeria            | 846 in | 100000 |
| 13. S        | audi Arabia       | 910 in | 100000 |
| 14. L        | Jnited Arab Emir. | 824 in | 100000 |
| 15. 0        | ireece            | 812 in | 100000 |
| 16. S        | witzerland        | 759 in | 100000 |
| 17. <b>l</b> | Jnited Kingdom    | 758 in | 100000 |
| 18. V        | /enezuela         | 738 in | 100000 |
| 19. C        | atar)             | 726 in | 100000 |
| 20. <b>A</b> | lustralia         | 684 in | 100000 |



# BullGuard

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Austria    | 1348 in 100000 |
|---------------|----------------|
| 2. Ecuador    | 1303 in 100000 |
| 3. Romania    | 1236 in 100000 |
| 4. Honduras   | 1077 in 100000 |
| 5. Chile      | 1030 in 100000 |
| 6. Israel     | 948 in 100000  |
| 7. Costa Rica | 912 in 100000  |
| 8. Sweden     | 910 in 100000  |
| 9. Peru       | 896 in 100000  |
| 10. Germany   | 871 in 100000  |

Global Non-Detection Risk: 335 in 100000

- 1. Jenxcus
- 2. Nivdort
- 3. Tofsee
- 4. Chicrypt
- 5. Bladabindi

| 11. | Spain             | 868 in | 100000 |
|-----|-------------------|--------|--------|
| 12. | Algeria           | 846 in | 100000 |
| 13. | Saudi Arabia      | 833 in | 100000 |
| 14. | United Arab Emir. | 824 in | 100000 |
| 15. | Greece            | 812 in | 100000 |
| 16. | Switzerland       | 759 in | 100000 |
| 17. | United Kingdom    | 758 in | 100000 |
| 18. | Venezuela         | 738 in | 100000 |
| 19. | Qatar             | 726 in | 100000 |
| 20. | Australia         | 684 in | 100000 |



# Emsisoft

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Austria    | 1345 in 100000 |
|---------------|----------------|
| 2. Ecuador    | 1301 in 100000 |
| 3. Romania    | 1234 in 100000 |
| 4. Honduras   | 1075 in 100000 |
| 5. Chile      | 1027 in 100000 |
| 6. Israel     | 946 in 100000  |
| 7. Costa Rica | 910 in 100000  |
| 8. Sweden     | 907 in 100000  |
| 9. Peru       | 894 in 100000  |
| 10. Germany   | 868 in 100000  |

Global Non-Detection Risk: 333 in 100000

- 1. Jenxcus
- 2. Nivdort
- 3. Tofsee
- 4. Chicrypt
- 5. Bladabindi

| 11. <b>Spain</b>     | 866 in 100000    |
|----------------------|------------------|
| 12. Algeria          | 844 in 100000    |
| 13. Saudi Arabia     | 831 in 100000    |
| 14. United Arab Emin | r. 823 in 100000 |
| 15. Greece           | 810 in 100000    |
| 16. Switzerland      | 757 in 100000    |
| 17. United Kingdom   | 756 in 100000    |
| 18. Venezuela        | 736 in 100000    |
| 19. Qatar            | 723 in 100000    |
| 20. <b>Australia</b> | 682 in 100000    |



# eScan

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Austria    | 1348 in 100000 |
|---------------|----------------|
| 2. Ecuador    | 1303 in 100000 |
| 3. Romania    | 1236 in 100000 |
| 4. Honduras   | 1077 in 100000 |
| 5. Chile      | 1030 in 100000 |
| 6. Israel     | 948 in 100000  |
| 7. Costa Rica | 912 in 100000  |
| 8. Sweden     | 910 in 100000  |
| 9. Peru       | 896 in 100000  |
| 10. Germany   | 871 in 100000  |

Global Non-Detection Risk: 335 in 100000

- 1. Jenxcus
- 2. Nivdort
- 3. Tofsee
- 4. Chicrypt
- 5. Bladabindi

| 11. <b>Spain</b>      | 868 in 100000 |
|-----------------------|---------------|
| 12. Algeria           | 846 in 100000 |
| 13. Saudi Arabia      | 833 in 100000 |
| 14. United Arab Emir. | 824 in 100000 |
| 15. Greece            | 812 in 100000 |
| 16. Switzerland       | 759 in 100000 |
| 17. United Kingdom    | 758 in 100000 |
| 18. Venezuela         | 738 in 100000 |
| 19. Qatar             | 726 in 100000 |
| 20. Australia         | 684 in 100000 |



# **ESET**

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Honduras         | 1520 in 100000 |
|---------------------|----------------|
| 2. Azerbaijan       | 1135 in 100000 |
| 3. Ecuador          | 1122 in 100000 |
| 4. Chile            | 1111 in 100000 |
| 5. Peru             | 1093 in 100000 |
| 6. Syria            | 1061 in 100000 |
| 7. Kuwait           | 1041 in 100000 |
| 8. Jamaica          | 1040 in 100000 |
| 9. Moldova          | 1035 in 100000 |
| 10. Slovak Republic | 1034 in 100000 |

Global Non-Detection Risk: 304 in 100000

- 1. Jenxcus
- 2. Brobanlaw
- 3. Lockscreen
- 4. Adload
- 5. Lurka

| 11. El Salvador        | 1022 in 100000 |
|------------------------|----------------|
| 12. Algeria            | 1022 in 100000 |
| 13. Puerto Rico        | 1020 in 100000 |
| 14. Albania            | 1011 in 100000 |
| 15. Uruguay            | 1009 in 100000 |
| 16. Senegal            | 1000 in 100000 |
| 17. Armenia            | 998 in 100000  |
| 18. Panama             | 996 in 100000  |
| 19. Georgia            | 995 in 100000  |
| 20. Bosnia and Herzeg. | 962 in 100000  |



# **F-Secure**

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Ecuador       | 1301 in 100000 |
|------------------|----------------|
| 2. Romania       | 1228 in 100000 |
| 3. Austria       | 1174 in 100000 |
| 4. Honduras      | 1076 in 100000 |
| 5. Chile         | 1026 in 100000 |
| 6. Israel        | 940 in 100000  |
| 7. Costa Rica    | 909 in 100000  |
| 8. Sweden        | 903 in 100000  |
| 9. Peru          | 893 in 100000  |
| 10. <b>Spain</b> | 860 in 100000  |

Global Non-Detection Risk: 312 in 100000

- 1. Jenxcus
- 2. Nivdort
- 3. Tofsee
- 4. Bladabindi
- 5. Gamarue

| 11. Algeria           | 840 in 100000 |
|-----------------------|---------------|
| 12. Saudi Arabia      | 820 in 100000 |
| 13. Germany           | 813 in 100000 |
| 14. United Arab Emir. | 807 in 100000 |
| 15. Greece            | 802 in 100000 |
| 16. United Kingdom    | 743 in 100000 |
| 17. Venezuela         | 736 in 100000 |
| 18. Switzerland       | 730 in 100000 |
| 19. Qatar             | 715 in 100000 |
|                       |               |
| 20. Australia         | 673 in 100000 |



# Fortinet

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Belarus            | 2155 in 100000 |
|-----------------------|----------------|
| 2. Ukraine            | 1169 in 100000 |
| 3. Azerbaijan         | 1149 in 100000 |
| 4. Russian Federation | 1073 in 100000 |
| 5. South Korea        | 935 in 100000  |
| 6. Venezuela          | 929 in 100000  |
| 7. Czech Republic     | 913 in 100000  |
| 8. Switzerland        | 885 in 100000  |
| 9. Uruguay            | 788 in 100000  |
| 10. <b>China</b>      | 735 in 100000  |
|                       |                |

Global Non-Detection Risk: 503 in 100000

- 1. Induc
- 2. Nuqel
- 3. Bladabindi
- 4. Caphaw
- 5. Nitol

| 11. United Kingdom  | 732 in 100000 |
|---------------------|---------------|
| 12. Slovak Republic | 730 in 100000 |
| 13. Singapore       | 723 in 100000 |
| 14. Moldova         | 689 in 100000 |
| 15. Malaysia        | 661 in 100000 |
| 16. New Zealand     | 659 in 100000 |
| 17. Armenia         | 636 in 100000 |
| 18. Slovenia        | 616 in 100000 |
| 19. Argentina       | 608 in 100000 |
| 20. Taiwan          | 594 in 100000 |



# Kaspersky Lab

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Ecuador      | 605 in 100000 |
|-----------------|---------------|
| 2. Honduras     | 508 in 100000 |
| 3. Peru         | 416 in 100000 |
| 4. Chile        | 398 in 100000 |
| 5. Algeria      | 393 in 100000 |
| 6. Venezuela    | 333 in 100000 |
| 7. Saudi Arabia | 296 in 100000 |
| 8. Morocco      | 250 in 100000 |
| 9. Puerto Rico  | 244 in 100000 |
| 10. Tunisia     | 234 in 100000 |

Global Non-Detection Risk: 89 in 100000

- 1. Jenxcus
- 2. Ursnif
- 3. Coolvidoor
- 4. Chkbot
- 5. Evotob

| 11. Colombia      | 220 in 100000 |
|-------------------|---------------|
| 12. Azerbaijan    | 216 in 100000 |
| 13. Nepal         | 212 in 100000 |
| 14. Jamaica       | 204 in 100000 |
| 15. Panama        | 199 in 100000 |
| 16. Iraq          | 199 in 100000 |
| 17. Kuwait        | 190 in 100000 |
| 18. Oman          | 189 in 100000 |
| 19. <b>Brazil</b> | 188 in 100000 |
| 20. Jordan        | 187 in 100000 |



# Lavasoft

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1405 in 100000 |
|----------------|
| 1354 in 100000 |
| 1278 in 100000 |
| 1163 in 100000 |
| 1078 in 100000 |
| 1013 in 100000 |
| 988 in 100000  |
| 968 in 100000  |
| 941 in 100000  |
| 908 in 100000  |
|                |

Global Non-Detection Risk: 363 in 100000

- 1. Jenxcus
- 2. Nivdort
- 3. Bladabindi
- 4. Tofsee
- 5. Chicrypt

| 11. | Algeria           | 904 in 100000 |
|-----|-------------------|---------------|
| 12. | Spain             | 900 in 100000 |
| 13. | Saudi Arabia      | 892 in 100000 |
| 14. | United Arab Emir. | 873 in 100000 |
| 15. | Greece            | 871 in 100000 |
| 16. | Switzerland       | 818 in 100000 |
| 17. | Czech Republic    | 811 in 100000 |
| 18. | Qatar             | 798 in 100000 |
| 19. | United Kingdom    | 797 in 100000 |
| 20. | Venezuela         | 784 in 100000 |



# McAfee / Intel Security

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. United States   | 2862 in 100000 |
|--------------------|----------------|
| 2. Switzerland     | 1383 in 100000 |
| 3. Austria         | 1241 in 100000 |
| 4. Canada          | 1224 in 100000 |
| 5. United Kingdom  | 1153 in 100000 |
| 6. Slovak Republic | 1148 in 100000 |
| 7. Panama          | 1120 in 100000 |
| 8. Czech Republic  | 1105 in 100000 |
| 9. Germany         | 1057 in 100000 |
| 10. Cambodia       | 1015 in 100000 |
|                    |                |

Global Non-Detection Risk: 525 in 100000

- 1. Gamarue
- 2. Bladabindi
- 3. Kovter
- 4. Nitol
- 5. Reffus

| 11. Lithuania | 1010 in 100000 |
|---------------|----------------|
| 12. Bolivia   | 1009 in 100000 |
| 13. Guatemala | 1005 in 100000 |
| 14. Albania   | 1003 in 100000 |
| 15. Iran      | 996 in 100000  |
| 16. Latvia    | 994 in 100000  |
| 17. Slovenia  | 970 in 100000  |
| 18. Estonia   | 962 in 100000  |
| 19. Denmark   | 935 in 100000  |
| 20. Mongolia  | 932 in 100000  |



# Microsoft

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Austria           | 1565 in 100000 |
|----------------------|----------------|
| 2. Romania           | 1486 in 100000 |
| 3. Sweden            | 1451 in 100000 |
| 4. Costa Rica        | 1232 in 100000 |
| 5. Switzerland       | 1202 in 100000 |
| 6. Greece            | 1165 in 100000 |
| 7. Spain             | 1122 in 100000 |
| 8. Germany           | 1100 in 100000 |
| 9. United Arab Emir. | 1063 in 100000 |
| 10. Israel           | 1011 in 100000 |

Global Non-Detection Risk: 279 in 100000

- 1. Nivdort
- 2. Gamarue
- 3. Lockscreen
- 4. Tofsee
- 5. Survins

| 11. Australia          | 1011 in 100000 |
|------------------------|----------------|
| 12. Cyprus             | 993 in 100000  |
| 13. United Kingdom     | 986 in 100000  |
| 14. Moldova            | 986 in 100000  |
| 15. Serbia             | 962 in 100000  |
| 16. Qatar              | 961 in 100000  |
| 17. Kuwait             | 940 in 100000  |
| 18. Syria              | 938 in 100000  |
| 19. Bosnia and Herzeg. | 921 in 100000  |
| 20. Slovak Republic    | 898 in 100000  |



# **Quick Heal (Total Security)**

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Austria    | 1353 in 100000 |
|---------------|----------------|
| 2. Ecuador    | 1305 in 100000 |
| 3. Romania    | 1240 in 100000 |
| 4. Honduras   | 1078 in 100000 |
| 5. Chile      | 1033 in 100000 |
| 6. Israel     | 958 in 100000  |
| 7. Sweden     | 918 in 100000  |
| 8. Costa Rica | 915 in 100000  |
| 9. Peru       | 897 in 100000  |
| 10. Germany   | 877 in 100000  |

Global Non-Detection Risk: 340 in 100000

- 1. Jenxcus
- 2. Nivdort
- 3. Bladabindi
- 4. Tofsee
- 5. Chicrypt

| 11. <b>Spain</b>      | 871 in 100000 |
|-----------------------|---------------|
| 12. Algeria           | 852 in 100000 |
| 13. Saudi Arabia      | 842 in 100000 |
| 14. United Arab Emir. | 829 in 100000 |
| 15. Greece            | 819 in 100000 |
| 16. United Kingdom    | 764 in 100000 |
| 17. Switzerland       | 764 in 100000 |
| 18. Venezuela         | 740 in 100000 |
| 19. Qatar             | 731 in 100000 |
| 20. Australia         | 688 in 100000 |



# Sophos

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Honduras      | 5229 in 100000 |
|------------------|----------------|
| 2. Ecuador       | 5162 in 100000 |
| 3. Algeria       | 4674 in 100000 |
| 4. Cote d'Ivoire | 4261 in 100000 |
| 5. Senegal       | 4153 in 100000 |
| 6. Peru          | 4051 in 100000 |
| 7. Georgia       | 4048 in 100000 |
| 8. Chile         | 3827 in 100000 |
| 9. Venezuela     | 3638 in 100000 |
| 10. Ghana        | 3465 in 100000 |

Global Non-Detection Risk: 1971 in 100000

- 1. Jenxcus
- 2. Gamarue
- 3. Psyokym
- 4. Kovter
- 5. Macoute

| 3335 in 100000 |
|----------------|
| 3272 in 100000 |
| 3195 in 100000 |
| 3192 in 100000 |
| 3125 in 100000 |
| 3070 in 100000 |
| 3036 in 100000 |
| 3032 in 100000 |
| 3028 in 100000 |
| 3011 in 100000 |
|                |



# Tencent (International/English version)

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Austria    | 1347 in 100000 |
|---------------|----------------|
| 2. Ecuador    | 1303 in 100000 |
| 3. Romania    | 1235 in 100000 |
| 4. Honduras   | 1077 in 100000 |
| 5. Chile      | 1029 in 100000 |
| 6. Israel     | 946 in 100000  |
| 7. Costa Rica | 912 in 100000  |
| 8. Sweden     | 908 in 100000  |
| 9. Peru       | 895 in 100000  |
| 10. Germany   | 870 in 100000  |

Global Non-Detection Risk: 335 in 100000

- 1. Jenxcus
- 2. Nivdort
- 3. Tofsee
- 4. Chicrypt
- 5. Bladabindi

| 11. | Spain             | 867 in 100000 |
|-----|-------------------|---------------|
| 12. | Algeria           | 844 in 100000 |
| 13. | Saudi Arabia      | 832 in 100000 |
| 14. | United Arab Emir. | 823 in 100000 |
| 15. | Greece            | 811 in 100000 |
| 16. | Switzerland       | 758 in 100000 |
| 17. | United Kingdom    | 757 in 100000 |
| 18. | Venezuela         | 738 in 100000 |
| 19. | Qatar             | 725 in 100000 |
| 20. | Australia         | 683 in 100000 |



# ThreatTrack

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Ecuador       | 1338 in 100000 |
|------------------|----------------|
| 2. Romania       | 1250 in 100000 |
| 3. Austria       | 1204 in 100000 |
| 4. Honduras      | 1144 in 100000 |
| 5. Chile         | 1067 in 100000 |
| 6. Costa Rica    | 966 in 100000  |
| 7. Israel        | 965 in 100000  |
| 8. Sweden        | 928 in 100000  |
| 9. Peru          | 924 in 100000  |
| 10. <b>Spain</b> | 877 in 100000  |

Global Non-Detection Risk: 316 in 100000

- 1. Jenxcus
- 2. Nivdort
- 3. Tofsee
- 4. Gamarue
- 5. Bladabindi

| 11. | Algeria           | 867 in | 100000 |
|-----|-------------------|--------|--------|
| 12. | Saudi Arabia      | 838 in | 100000 |
| 13. | United Arab Emir. | 829 in | 100000 |
| 14. | Greece            | 828 in | 100000 |
| 15. | Germany           | 819 in | 100000 |
| 16. | Venezuela         | 769 in | 100000 |
| 17. | Switzerland       | 762 in | 100000 |
| 18. | United Kingdom    | 754 in | 100000 |
| 19. | Qatar             | 753 in | 100000 |
| 20. | Cyprus            | 698 in | 100000 |
|     |                   |        |        |



# **Trend Micro**

The world map below shows the encounter rates across the globe based on the distribution of samples missed by this vendor:



#### Customer Impact by Country/Region (normalised):

| 1. Georgia            | 3037 in 100000 |
|-----------------------|----------------|
| 2. Myanmar            | 2810 in 100000 |
| 3. Armenia            | 2279 in 100000 |
| 4. Belarus            | 1763 in 100000 |
| 5. Latvia             | 1575 in 100000 |
| 6. Kazakhstan         | 1574 in 100000 |
| 7. Ukraine            | 1556 in 100000 |
| 8. Russian Federation | 1481 in 100000 |
| 9. Moldova            | 1435 in 100000 |
| 10. Bolivia           | 1433 in 100000 |

Global Non-Detection Risk: 997 in 100000

- 1. Gamarue
- 2. Mytonel
- 3. Conustr
- 4. Bladabindi
- 5. Genmaldow

| 11. Algeria         | 1427 in 100000 |
|---------------------|----------------|
| 12. Estonia         | 1403 in 100000 |
| 13. Finland         | 1390 in 100000 |
| 14. Guatemala       | 1376 in 100000 |
| 15. Panama          | 1374 in 100000 |
| 16. South Korea     | 1330 in 100000 |
| 17. El Salvador     | 1318 in 100000 |
| 18. Czech Republic  | 1303 in 100000 |
| 19. Slovak Republic | 1276 in 100000 |
| 20. Germany         | 1273 in 100000 |



# **Copyright and Disclaimer**

This publication is Copyright © 2016 by AV-Comparatives ®. Any use of the results, etc. in whole or in part, is ONLY permitted after the explicit written agreement of the management board of AV-Comparatives, prior to any publication. AV-Comparatives and its testers cannot be held liable for any damage or loss, which might occur as result of, or in connection with, the use of the information provided in this paper. We take every possible care to ensure the correctness of the basic data, but a liability for the correctness of the test results cannot be taken by any representative of AV-Comparatives. We do not give any guarantee of the correctness, completeness, or suitability for a specific purpose of any of the information/content provided at any given time. No one else involved in creating, producing or delivering test results shall be liable for any indirect, special or consequential damage, or loss of profits, arising out of, or related to, the use or inability to use, the services provided by the website, test documents or any related data.

For more information about AV-Comparatives and the testing methodologies, please visit our website.

AV-Comparatives (April 2016)

